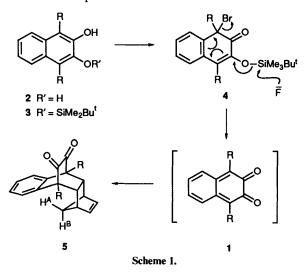
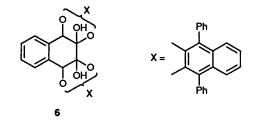
Generation of 2,3-Naphthoquinones under Non-oxidative Conditions

David W. Jones* and Firstborn Matthew Nongrum

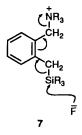

School of Chemistry, The University of Leeds, Leeds LS2 9JT, UK

The 2,3-naphthoquinones 1 (R = Ph, *o*-tolyl, COPh, CI and Prⁿ) can be generated by desilylationdebromination induced by fluoride ion (**4**; arrows) and trapped as the adducts **5** with norbornadiene.

Table 1


As deduced from the formation of the appropriate adducts with olefins and dienes, 2,3-naphthoquinone 1 ($\mathbf{R} = \mathbf{H}$) and its 1,4diphenyl derivative 1 ($\mathbf{R} = \mathbf{Ph}$) are generated by oxidation of the corresponding naphthalene-2,3-diols.^{1,2} However the adducts could have been formed by trapping radicals or other intermediates formed during the oxidation of the naphthalenediols rather than from the 2,3-naphthoquinones themselves.² We describe here a non-oxidative generation of 1 ($\mathbf{R} = \mathbf{Ph}$) by a process which, unlike the oxidative process, can be applied to several other 1,4-disubstituted 2,3-naphthoquinones.

The route adopted is outlined in Scheme 1 and was first


developed for 1 (R = Ph). Monosilylation of the diol 2 (R = Ph) was achieved in 89% yield by reaction with t-butyldimethylsilyl chloride (TBDMSC) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in CH₂Cl₂ (20 °C, 3 h). The product was brominated with *N*-bromosuccinimide (CH₂Cl₂, 0–5 °C, 1 h) to give 4 (R = Ph), m.p. 115–117 °C; v_{max} (CHCl₃)/cm⁻¹ 1675, which exhibited non-equivalence of the methyl groups on the silicon ($\delta_{\rm H}$ 0.01 and 0.06). In the key step, 4 (R = Ph) eliminated cleanly (4; arrows) under the influence of tetra-n-butylammonium fluoride (TBAF) in CH₂Cl₂–THF at – 50 °C to give a deep green colour. A similar green colour attends the generation of 1 (R = Ph) by lead tetraacetate oxidation of 2 (R = Ph). When formed from 4 (R = Ph) in THF, the visible spectrum of 1 (R = Ph) was readily recorded (λ_{max} 670 nm) and the green colour was shown to fade over 1 h at – 50 °C. Isolation then gave the

Adduct 5	Yield (%) $3 \longrightarrow 4 \longrightarrow 5$	¹ H NMR data		
		δ_A	δ _B	$J_{ m AB}/ m Hz$
$\mathbf{R} = \mathbf{P}\mathbf{h}$	64.3	-0.30	0.65	9.5
$\mathbf{R} = o$ -tolyl	43	-1.0	0.58	10.0
$\mathbf{R} = \mathbf{COPh}$	43	-0.91	0.56	10.2
$\mathbf{R} = \mathbf{Cl}$	44	0.14	0.84	10.2
$\mathbf{R} = \mathbf{Pr^n}$	20	0.07	0.73	9.5

trimerides 6 which had been previously obtained by oxidation of 2(R = Ph).² Formation of the trimerides presumably involves initial hydrogen abstraction by 1 (R = Ph) from the solvent.² Desilylation-debromination of 4 (R = Ph) in the presence of norbornadiene at -50 °C gave the adduct 5 (R = Ph) in 69.1% yield. The pronounced shielding of the methylene hydrogens (H^A and H^B) in the adducts 5 (Table 1) is only consistent with *endo*-selective Diels-Alder additions to the *exo* face of a norbornadiene double bond.

Whilst the oxidative route is also effective for the generation and trapping of 1 ($\mathbf{R} = o$ -tolyl) it fails for the other adducts shown in Table 1. On the other hand the non-oxidative route proceeds in the moderate (but unoptimised) yields given in Table 1 for the two stages $3 \longrightarrow 4 \longrightarrow 5$. The silvl group is important in this procedure. Although an acetyl group allows formation of a bromo-compound related to 4 (R = Ph), subsequent treatment with sodium methoxide in the presence of cyclopentadiene failed to give the known² guinone-cyclopentadiene adducts. Similarly OAc cannot replace Br as leaving group in 4 (R = Ph). Our procedure is related to the Saegusa route to o-quinodimethanes³ which is summarised in structure 7. Our results therefore suggest that enol silvl ethers can replace the C-silvlated group and that Br can replace the NR₃ leaving group in this process. This reaction should be a general one.

Experimental

Silylation of 1,4-Dibenzoylnaphthalene-2,3-diol.—The title compound (100 mg), TBDMSC (82 mg), dichloromethane (4 cm³) and DBU (0.038 cm³) were stirred under argon at 20 °C (18 h). The product was isolated in ether in the usual way including washing with 0.1 mol dm⁻³ hydrochloric acid and saturated aqueous sodium hydrogen carbonate. Short column chromatography⁴ in benzene gave the monosilylated *title compound* **3** (R = COPh) (114 mg), m.p. 179–180 °C (from methanol) (Found: C, 74.9; H, 6.25. $C_{30}H_{30}O_4$ Si requires C, 74.7; H, 6.2%); v_{max}/cm^{-1} 3546 and 1669; δ_H (90 MHz) 0.17 (6 H, s, 2 × Me), 7.70 (9 H, s), 7.0–8.0 (14 H, m) and 10.6 (1 H, exch. D_2O).

Trapping 1,4-Dibenzoyl-2,3-naphthoquinone with Norborna-

diene.—The foregoing silyl ether (100 mg) in dry dichloromethane (2 cm³) was stirred at 0–5 °C and N-bromosuccinimide (37 mg) added. After it had been stirred at 0–5 °C under argon (3 h) the reaction mixture was cooled to -78 °C and freshly distilled norbornadiene (2 cm³) was added via a syringe, followed by TBAF in THF (0.5 cm³ of 1 mol dm⁻³ solution). The mixture was stirred at -78 °C (1 h) and then left to warm to room temperature over 2 h. The product was poured into water and isolated in ether in the usual way. The resulting oil crystallised from CH₂Cl₂–EtOH (40 mg, 43%), m.p. 250–254 °C (Found: C, 81.3; H, 4.8. C₃₁H₂₂O₄ requires C, 81.2; H, 4.8%); v_{max}(CHCl₃)/cm⁻¹ 1739, 1720 and 1679.

References

- 1 V. Horak, F. V. Foster, R. deLevie, J. W. Jones and P. Svoronos, Tetrahedron Lett., 1981, 3577.
- 2 D. W. Jones and R. L. Wife, J. Chem. Soc., Perkin Trans. 1, 1974, 1.
- 3 Y. Ito, M. Nakatsuka and T. Saegusa, J. Am. Chem. Soc., 1982, 104,
- 7609; S. Djuric, T. Sarkar and P. Magnus, 1980, 102, 6885.
- 4 B. J. Hunt and W. Rigby, Chem. Ind (London), 1967, 1868.

Paper 0/03758C Received 15th August 1990 Accepted 24th September 1990